A Novel Linear Switched Reluctance Machine: Analysis and Experimental Verification

نویسندگان

  • N. C. Lenin
  • R. Arumugam
چکیده

The important problems to be solved in Linear Switched Reluctance Machines (LSRMs) are: (1) to design the shape and size of poles in stator and translator cores; (2) to optimize their geometrical configuration. A novel stator geometry for LSRMs that improved the force profile was presented in this study. In the new geometry, pole shoes were affixed on the stator poles. Static and dynamic characteristics for the proposed structure had been highlighted using Two Dimensional (2-D) Finite Element Analyses (FEA). Motor performance for variable load conditions was discussed. The finite element analyses and the experimental results of this study proved that, LSRMs were one of the strong candidates for linear propulsion drives. Problem statement: To mitigate the force ripple without any loss in average force and force density. Approach: Design modifications in the magnetic structures. Results: 2-D finite element analysis was used to predict the performance of the studied structures. Conclusion/Recommendations: The proposed structure not only reduces the force ripple, also reduced the volume and mass. The future study is to make an attempt on vibration, thermal and stress analyses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electromagnetic field analysis of novel low cogging force, linear switched reluctance motor, based on 2-D finite element method

This paper deals with electromagnetic design and 2-D (two-dimensional) magnetic field analysis of novel low force ripple linear switched reluctance (LSR) motor. The configuration that has been presented here has a higher number of rotor poles than stator poles, and the purpose of this configuration is to improve the force ripple, which is the weak point of LSRMs. In order to illustrate the ...

متن کامل

A Novel Two Phase Hybrid Switched Reluctance Motor/Field-Assisted Generator: Concept, Simulation, and Experimental Confirmation

The switched reluctance motor is a simple and robust machine, which has found application over a wide power and speed ranges in different shapes and geometries. This paper introduces a new configuration for a two phase unidirectional switched reluctance motor/field assisted generator. The proposed novel motor/generator consists of two magnetically independent stator and rotor sets (layers), whe...

متن کامل

A Novel Approach to Design the Dual Rotor Switched Reluctance Motor Based Electric Vehicles

Electric and hybrid electric vehicles are attractive candidates for sustainable transportation due to its higher efficiency and low emission. The critical choice on the electric motors is its capability of motoring and regenerative braking characteristics. Switched reluctance machines are viable candidate as with proper control and extended constant power range operation replacing the multi-gea...

متن کامل

Automatic Phase Advancing in a Stand-Alone Switched Reluctance Generator at Different High Speeds for Desired Output Voltage

The switched reluctance motor is a singly excited, doubly salient machine which can be used in generation mode by selecting the proper firing angles of the phases. Due to its robustness, it has the potential and the ability to become one the generators to be used in harsh environment. This paper presents an energy conversion by a Switched Reluctance Generator (SRG) when bifilar converter ci...

متن کامل

Analysis and Comparison Study of Novel Stator-Segmented Switched Reluctance Motor

This paper presents analysis and comparative study of a novel high-torque three-phase switched reluctance motor (SRM) with magnetically isolated stator segments. In the proposed SRM, each segment has a concentric winding located on the center body of it and two diametrically opposite windings which form the motor phase. There are four salient poles in the stator segment. Two of them share their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010